Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile.
نویسندگان
چکیده
Standard metabolic rate is 7-fold greater in the rat (a typical mammal) than in the bearded dragon, Amphibolurus vitticeps (a reptile with the same body mass and temperature). Rat hepatocytes respire 4-fold faster than do hepatocytes from the lizard. The inner membrane of isolated rat liver mitochondrial has a proton permeability that is 4-5-fold greater than the proton permeability of the lizard liver mitochondrial membrane per mg of mitochondrial protein. The greater permeability of rat mitochondria is not caused by differences in the surface area of the mitochondrial inner membrane, but differences in the fatty acid composition of the mitochondrial phospholipids may be involved in the permeability differences. Greater proton permeability of the mitochondrial inner membrane may contribute to the greater standard metabolic rate of mammals.
منابع مشابه
Comparison of the "mammal machine" and the "reptile machine": energy production.
Standard metabolism and body composition were measured in Amphibolurus nuchalis and Mus musculus (a reptile and mammal with the same weight and body temperature). The metabolic capacity for energy production was assessed in liver, heart, brain, and kidney in the lizard and mouse by two methods: measurement of mitochondrial enzyme activity (cytochrome oxidase) and measurement of both mitochondri...
متن کاملMitochondrial Proton Leak Compensates for Reduced Oxidative Power during Frequent Hypothermic Events in a Protoendothermic Mammal, Echinops telfairi
The lesser hedgehog tenrec (Echinops telfairi) displays reptile-like thermoregulatory behavior with markedly high variability in body temperature and metabolic rate. To understand how energy metabolism copes with this flexibility, we studied the bioenergetics of isolated liver mitochondria from cold (20°C) and warm (27°C) acclimated tenrecs. Different acclimation temperatures had no impact on m...
متن کاملLow mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells.
Isolated mitochondria from highly glycolytic Ehrlich and AS30-D tumor cells have a 12.4- and a 2.3-fold higher cholesterol level, respectively, than that of rat liver mitochondria. The passive proton permeability of Ehrlich and AS30-D tumor inner membrane mitochondria is, respectively, 4- and 1.4-fold lower than that of rat liver mitochondrial membrane. This feature is accompanied by a lower pr...
متن کاملModified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane
A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...
متن کاملToxicity of Arsenic (III) on Isolated Liver Mitochondria: A New Mechanistic Approach
Arsenic exposure mainly through food and water has been shown to be associated with increased incidence of numerous cancers and non-cancer harmful health. It is also used in cancer chemotherapy and treatment of several cancer types due to its apoptogenic effects in the various cancer and normal cell lines. We have already reported that liver is the storage site and important target organ in As ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 275 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1991